If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-84x-190=0
a = 16; b = -84; c = -190;
Δ = b2-4ac
Δ = -842-4·16·(-190)
Δ = 19216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19216}=\sqrt{16*1201}=\sqrt{16}*\sqrt{1201}=4\sqrt{1201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{1201}}{2*16}=\frac{84-4\sqrt{1201}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{1201}}{2*16}=\frac{84+4\sqrt{1201}}{32} $
| 11t+2t-7t+4t-6t=16 | | z−z+1=z+1 | | 6(3b-4)+(2b-5)=140 | | 6a+3=2a+6a-3 | | 35x+40Y=4565 | | 2x-(6)=-10 | | 16-14m=-264 | | y=1/0^2-9 | | -5293=67n | | 3v-6°=-12 | | -2450=-35x | | -12m=1164 | | 10x+6=56+5x | | m-23=31 | | 4x-10+10=10x-48 | | 3/9x=9 | | 3y+1=7y-17 | | X+10y=110 | | 5x+13,824=9x-17 | | ((6/7)/(12/21))=4/x | | 7x3=30+ | | F(t)=140 | | 2(x+5)=4x-3 | | 2x+8=8-6(x-24) | | 3(x+5)^2=27 | | 1.50+30=3d+12 | | -5/3m=6 | | 1,50+30=3d | | 6x+1/7=3x-251/7 | | -3/4(-x+8)=(6x-10) | | 1.50+30=3d=12 | | 3/4e+6=0 |